
Kaggle Competition: Multi-Objective Recommender System

Aiden Wan Cheng-Han Wu

Master of Data Science
University of California, Irvine

1 Abstract

This work explores a multi-stage recommendation pipeline
designed for the OTTO multi-objective recommender sys-
tem competition. The pipeline begins by generating candi-
date items through session-level co-visitation signals, leverag-
ing different weighting schemes for clicks, carts, and orders.
These candidates are then re-ranked using an XGBoost model
trained on session-item features such as temporal behavior,
item popularity, and user-event interactions. Through five-
fold cross-validation and extensive out-of-fold (OOF) predic-
tions, the approach achieves a significantly higher recall than
a simple baseline that recommends the last 20 actions. Po-
tential future enhancements include embedding-based feature
engineering (e.g., graph or sequence embeddings) and deep
learning architectures (e.g., transformers, GNNs) to capture
more complex patterns of user behavior.

2 Introduction

2.1 Problem Description

The competition aims to help OTTO, Germany’s largest on-
line retailer, develop a recommender system that predicts user
actions, including clicks, cart additions, and orders, based on
previous events within a shopping session.

A shopping session refers to the period when a customer
interacts with an online store. Since customers may visit
the platform multiple times, each user has their own multiple
shopping sessions. Within a session, they engage with various
products by clicking, adding items to their cart, or making
purchases. As a result, retailers accumulate millions of ses-
sion records, each capturing a sequence of interactions over a
specific period.

The term ”multi-objective” emphasizes the need for a uni-
fied model that predicts multiple outcomes at once. By ana-
lyzing a user’s real-time behavior within a session, the model
can determine which products they are most likely to click on,
add to their cart, or purchase next. This capability allows re-
tailers to deliver more relevant recommendations, ultimately
enhancing the shopping experience and driving higher sales.

2.2 Exploratory Data Analysis (EDA)

2.2.1 Key Features

• 12M real-world anonymized user sessions

• 220M events, consisting of clicks, carts, and orders

2.2.2 Dataset Statistics

See the Table 1.

Dataset #sessions #clicks #carts #orders

Train 12,899,779 194,720,954 16,896,191 5,098,951
Test 1,671,803 12,340,303 1,155,698 355,292

Table 1: Dataset Statistics

2.2.3 Data Format

The sessions are stored as JSON objects containing a unique
session ID and a list of events:

Listing 1: Sample Session Data

{

"session_id ": 12345 ,

"user": "guest",

"events ": [

{" event": "click", "item_id ": 101,

"timestamp ": "2025 -03 -15 T12

:00:00Z"},

{" event": "cart", "item_id ": 102,

"timestamp ": "2025 -03 -15 T12

:05:00Z"},

{" event": "purchase", "item_id ":

102, "timestamp ": "2025 -03 -15

T12 :10:00Z"}

]

}

2.2.4 Descriptive statistics

• Events number per session

Statistic Train Test

Mean 16.80 8.29
Std 33.58 13.74
Min 2 2
50% 6 4
75% 15 8
90% 39 18
95% 68 28
Max 500 498

Table 2: Transposed Statistics of Events per Session

1



Figure 1: Action Frequency

• Action frequency
See the Figure 1.

• Action frequency
See the Figure 2.

Figure 2: Action Frequency

3 Method

3.1 Two-stage Recommendation

In large-scale e-commerce scenarios, we adopt a two-stage
recommendation pipeline—candidate generation followed by
reranking—to balance performance and efficiency. First, we
identify a relatively small subset of “likely relevant” items
from a massive product catalog, using lightweight meth-
ods such as co-visitation matrices or popular-item heuris-
tics. These candidates are then passed to a more sophisti-
cated model that reranks them based on richer features and
user-context information. This division of labor significantly
reduces computational overhead, since the expensive model
only processes a few hundred candidates instead of the entire
product set.

3.2 Candidates Generation

3.2.1 Co-visitation Matrix

Below are the three distinct methods implemented to com-
pute the co-visitation matrix based on session-level item co-

occurrence. Each method is based on the core idea of gen-
erating item pairs from user sessions, but they differ in how
they filter interactions and assign weights.

General Co-visitation Calculation For each session, up
to 30 of the most recent events are retained. A self-join is
performed to generate item pairs where the two items are
distinct and occur within 24 hours of each other. Each pair is
assigned a weight based on the event type of the second item
(click, cart, or order). These weights are aggregated across
sessions, and the top 20 candidates for each item are selected.

Co-visitation for Carts and Orders This method fol-
lows the same process as the general co-visitation approach
but considers only cart and order events. Additionally, a
14-day time window is applied to filter item pairs. All pairs
receive a uniform weight, which is summed over sessions. The
top 20 candidates per item are then retained.

Time-Weighted Co-visitation for Clicks Click events
are processed similarly to the general method, using a 24-hour
window and up to 30 recent events per session. However, in-
stead of a constant weight, each pair is weighted dynamically
based on recency:

wgt = 1 + 3× tsx − 1659304800

1662328791− 1659304800
(1)

This assigns greater importance to more recent interac-
tions. After aggregation, the top 25 candidates per item are
selected.

3.2.2 Generate Candidates

The candidate generation method relies primarily on precom-
puted co-visitation matrices, with a backup suggestion mech-
anism derived from user history.

Click-Based Candidate Generation Candidates are re-
trieved using a co-visitation matrix by iterating over unique
session items in reverse chronological order. If the session his-
tory contains at least 20 unique items, a re-ranking is applied
using logarithmically spaced weights:

weights = logspace(0.1, 1, len,base = 2)− 1 (2)

Each item’s weight is adjusted by an event-type multiplier,
and the top 25 items are selected. If the session history
is short, the candidate list is supplemented with frequently
clicked items from the test set.

Purchase-Based Candidate Generation For purchase
events, two co-visitation matrices are used: one combining
carts and orders, and another focusing on buy-to-buy rela-
tionships. If the purchase history is long enough, re-ranking
is performed with:

weights = logspace(0.5, 1, len,base = 2)− 1 (3)

Weighted scores are aggregated, and the top items are re-
tained. If necessary, additional candidates are drawn from
co-visitation matrices and top-ordered items from the test
data.

2



Merging and Final Candidate Assembly Click-based
and purchase-based candidates are merged and deduplicated.
If fewer than 50 candidates remain, top-ordered items from
the full training data are added to complete the list, ensuring
a final selection of 50 items per session.

3.3 Re-ranking

3.3.1 Model Selection

We choose to build a XGBRanker for the re-ranking part.
The reasons are as follows:

XGBoost employs Gradient Boosting, an iterative learn-
ing process that improves prediction accuracy by minimizing
errors. The process begins with an initial model making a
prediction, followed by calculating the residuals (errors). A
decision tree is then trained to learn and correct these errors,
adjusting the predictions accordingly. This cycle repeats until
the model reaches optimal performance.

XGBoost’s Sparse Aware Technology automatically han-
dles missing values by optimizing information gain. Instead of
requiring explicit imputation, it dynamically assigns missing
values to the left or right child node based on which minimizes
the loss function. This is particularly useful for features with
frequent missing values, such as session last click aid in
session-level features, where a candidate product may lack
click data. Traditional imputation methods, like removing
samples with missing values, filling them with mean, median,
or mode may introduce bias, and using algorithms like KNN
or Random Forest for imputation can cause information loss,
bias, or high computational costs. XGBoost’s approach elim-
inates these issues, ensuring efficient and accurate model per-
formance.

3.3.2 Feature Engineering

In this section, we introduce the newly engineered features
used to enhance the performance of the recommender system.
These features are categorized into three groups: session-level
features, item-level features, and interaction features. They
provide insights into user behavior, product popularity, and
session-based interactions. For each session, these features are
extracted specifically for candidate products that are consid-
ered for prediction, ensuring more accurate and relevant rec-
ommendations. For more detail on feature engineering, refer
to the GitHub link.

4 Experiments

4.1 Environment

• Co-visitation Calculation: Performed on Kaggle
Notebooks with two T4 GPUs.

• Feature Engineering: Performed on a 32GB MacBook
Air M2.

• Model Training: Performed on Google Colab Pro us-
ing an A100 GPU.

4.2 Data Preparation

4.2.1 Generate Train and Validation Data

Our train data consists of the first 3 weeks of Kaggle train
data, while our validation data is taken from the last week.
The validation data is further split into validation data A and
validation data B, where validation B contains the ground
truths. For every session in validation data A, we generate X
candidate aids. To minimize memory footprint, we divided
the ts column by 1000.

4.2.2 Labeling

For each session, labels are assigned to candidate products to
indicate whether they will be clicked, added to the cart, or
purchased in subsequent interactions:

• Clicks: 1 if clicked next within the session, otherwise 0.

• Carts: 1 if added to the cart next within the session,
otherwise 0.

• Orders: 1 if purchased next within the session, other-
wise 0.

4.3 Model Training

4.3.1 Setup and Parameter Initialization

xgb_parms = {

’objective’:’rank:pairwise’,

’eval_metric’:’map’,

’tree_method’:’hist’,

’device’: ’cuda’,

’learning_rate’:0.1,

’max_depth’:4,

’subsample’:0.7,

’colsample_bytree’:0.5,

’random_state’: 42

}

4.3.2 Data Loading and Preprocessing

The full dataset is stored in a single parquet file and read
using Dask to efficiently handle large data volumes. Then
infinity values in features (e.g., those derived from rates) are
replaced with NaN values because XGBoost cannot process
infinity.

4.3.3 Cross-Validation Setup

A specific fold is chosen manually (e.g., fold 0) from a pre-
defined list of folds. Each fold contains two sets: one for
training sessions and one for validation sessions. The Dask
DataFrame is filtered using the session identifiers for the cur-
rent fold. The filtered training and validation data are then
computed into Pandas DataFrames.

4.3.4 Constructing the XGBoost DMatrix

To construct the XGBoost DMatrix for ranking tasks, we first
compute group sizes based on the number of events per ses-
sion, which XGBoost requires for ranking objectives. We then
create both training and validation matrices from the chosen
features and target labels, and assign the computed group
information to each DMatrix so that XGBoost can properly
handle per-session ranking.

3



4.3.5 Model Training

The model is trained using xgb.train with a high number
of boosting rounds (10,000) but with early stopping after 200
rounds if no improvement is observed on the validation set.
Verbose output is provided every 100 rounds. Once train-
ing is complete, the model is saved to disk with a filename
indicating the current fold, target type, and version number.

4.3.6 Validation Inference

Due to potentially large validation data, inference is per-
formed in batches (2,000,000 rows per batch). Predictions
are generated on each batch and stored into a local out-of-
fold (OOF) array. The local OOF predictions are mapped
back into the global OOF array using the original indices of
the validation set. These predictions are saved for later eval-
uation.

4.4 Local Validation

4.4.1 Aggregating OOF Predictions

A global prediction array (final oof) is initialized with a
fixed size (90,062,550 rows). For each of the 5 folds, the
validation indices and corresponding local OOF predictions
(saved during model training) are loaded and placed into their
corresponding positions in the global OOF array. This en-
sures that every instance in the dataset receives an OOF pre-
diction.

4.4.2 Candidate Ranking and Submission Assembly

The global OOF predictions are merged with the session-item
DataFrame (converted from the original Dask DataFrame) by
assigning the prediction score to each row. The DataFrame
is then sorted by session and prediction score (in descending
order) to prioritize items with higher predicted relevance. For
each session, items are ranked, and only the top 20 candidates
are retained. This is accomplished by grouping by session and
computing a cumulative count per group, then filtering out
items beyond the 20th rank.

4.4.3 Evaluation Metric Computation

The submission is merged with a preprocessed validation la-
bels dataset (loaded from a parquet file) based on session

and type. Sessions without predictions receive an empty can-
didate list. For each session, the number of correct predic-
tions (”hits”) is determined by computing the intersection
between the predicted candidate list and the ground truth.
The ground truth count is clipped to a maximum of 20.
Recall per type is calculated by summing the hits across

sessions and dividing by the total ground truth count. The
final score is computed as a weighted sum of the recalls for
different types, using weights (clicks: 0.10, carts: 0.30, orders:
0.60) according to the requirement.

4.5 Validation Results

Below are the validation results compared against the com-
monly referenced baseline approach:

• Per-Type Recall:

– Orders: 0.607055

– Clicks: 0.498113

– Carts: 0.38514

• Weighted Final Score:

0.607× 0.60 + 0.38× 0.30 + 0.498× 0.10 = 0.53 (4)

Comparison to Baseline: A commonly cited baseline in
the OTTO competition (as discussed by Radek Osmulski)
achieves a score of approximately 0.432 by simply taking the
user’s last 20 actions as the prediction. The rationale for
this baseline is that users tend to revisit recently interacted
items (e.g., repeated clicks or purchases). In comparison, the
approach outlined here—incorporating co-visitation signals,
user-history weighting, and an XGBoost reranker—improves
upon the baseline by nearly 0.10 in absolute score, reflecting
a substantial gain in recall performance.

4.6 Inference and Final Score

For inference, we create a new candidate dataframe (using
our technique to generate candidates before) but this time
from Kaggle’s test data. Then we make item features from
all 4 weeks of Kaggle train plus 1 week of Kaggle test. And
we make user features from Kaggle test. We merge the fea-
tures to our candidates. Then we use our saved models to
infer predictions. Lastly, we select 20 by sorting the predic-
tions and choosing the top 20. The final leaderboard score is
0.55483.

5 Future Work and Potential Im-
provements

Despite the effectiveness of the current system, there are sev-
eral avenues for enhancing both the feature engineering and
modeling aspects. However, due to time and computational
constraints, the following advanced methods were not fully
explored.

5.1 Advanced Feature Engineering

Embedding-Based Features: Instead of relying solely on
manual feature engineering, we can learn low-dimensional
representations (embeddings) of items or sessions. This can
be achieved via Word2Vec-like training on item sequences.
Learned embeddings can capture latent item-item relation-
ships more effectively than manual co-occurrence metrics.

Temporal and Contextual Signals: Incorporating more
sophisticated time-based features (e.g., session velocity, day-
of-week patterns) or contextual cues (like device type or user
geography) can add valuable signals. These features could be
combined with session embeddings to reflect short-term user
intent more accurately.

4



5.2 Deep Learning Models

Sequence Modeling Architectures: Recurrent Neural
Networks (RNNs), GRUs, or LSTM-based models can explic-
itly model the sequential nature of user interactions within a
session. This is especially useful when predicting the next
item or purchase event.

6 Reference

• https://www.kaggle.com/competitions/

otto-recommender-system

• https://www.kaggle.com/competitions/

otto-recommender-system/discussion/364991

• https://www.kaggle.com/competitions/

otto-recommender-system/discussion/370210

• https://www.kaggle.com/competitions/

otto-recommender-system/discussion/364721

7 Source Code

For the execution code, please refer to the GitHub link.

8 Statement of Collaboration

This report is the result of a comprehensive investigation and
discussion conducted by Aiden Wan and Cheng-Han Wu on
the entire project. In terms of implementation, Aiden Wan
was responsible for Candidates Generation, Model Training,
and Local Validation. Meanwhile, Cheng-Han Wu was in
charge of Exploratory Data Analysis (EDA), Feature Engi-
neering, and Data Labeling.

5

https://www.kaggle.com/competitions/otto-recommender-system
https://www.kaggle.com/competitions/otto-recommender-system
https://www.kaggle.com/competitions/otto-recommender-system/discussion/364991
https://www.kaggle.com/competitions/otto-recommender-system/discussion/364991
https://www.kaggle.com/competitions/otto-recommender-system/discussion/370210
https://www.kaggle.com/competitions/otto-recommender-system/discussion/370210
https://www.kaggle.com/competitions/otto-recommender-system/discussion/364721
https://www.kaggle.com/competitions/otto-recommender-system/discussion/364721
https://github.com/albert0796/Multi-Objective-Recommender-System.git

	Abstract
	Introduction
	Problem Description
	Exploratory Data Analysis (EDA)
	Key Features
	Dataset Statistics
	Data Format
	Descriptive statistics


	Method
	Two-stage Recommendation
	Candidates Generation
	Co-visitation Matrix
	Generate Candidates

	Re-ranking
	Model Selection
	Feature Engineering


	Experiments
	Environment
	Data Preparation
	Generate Train and Validation Data
	Labeling

	Model Training
	Setup and Parameter Initialization
	Data Loading and Preprocessing
	Cross-Validation Setup
	Constructing the XGBoost DMatrix
	Model Training
	Validation Inference

	Local Validation
	Aggregating OOF Predictions
	Candidate Ranking and Submission Assembly
	Evaluation Metric Computation

	Validation Results
	Inference and Final Score

	Future Work and Potential Improvements
	Advanced Feature Engineering
	Deep Learning Models

	Reference
	Source Code
	Statement of Collaboration

